

# T0060-P Dynamic and Static Behavior of a Flexible Fuel Hose in Zero-G

#### **Problem Statement**

- Flexible fuel hoses are in the design for on-orbit satellite refueling operations.
- These have inner corrugated tubes that are torsionally stiff. Improper handling can result in force-torque buildup or breakage.
- A flight will verify if our handling measure (to prevent these negative results) are correct.
- This information is useful to future space missions that need to be refueled or serviced.

# Technology Development Team

- Dr. Edward Cheung. Jackson and Tull/GSFC edward.b.cheung@nasa.gov.
- NASA/GSFC Code 408 Satellite Servicing Capabilities Office
- NASA/KSC Team 541638 Satellite Refueling Office

# **Proposed Flight Experiment**

### **Experiment Readiness:**

· Readiness for flight in January 2013

#### **Test Vehicles:**

· Parabolic aircraft

#### Test Environment:

 This is the first parabolic flight for this hardware.
A subset (different sensors) will be tested in a neutral buoyancy tank.

## **Test Apparatus Description:**

 A section of flexible hose (green) will be flown and attached into a holding fixture and tested for static and dynamic forces to understand if our handling measures are correct.



# **Technology Maturation**

- To mature to TRL 5, a parabolic flight is needed, which validates our handling procedures. We then use an end-end lab test to mature to TRL 6.
- The Parabolic flight is expected to occur in the Spring/Summer of 2013, and the lab test in Fall 2013.

# Objectives of Proposed Experiment

- To measure the steady state forces and torques at the hose endpoints.
- To gather data to correlate a dynamical model of the hose.
- A force-torque sensor will be used for the static data, and a three-dimensional motion capture system will be used for the hose shape capture.

9/2012

TA4.3 (Manipulation): TA4.3.1, TA4.3.2, TA4.3.4. TA12 (Flexible Structures): WBS 2.3.1.c, and WBS 2.3.3.d